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Product 
Manager?

Project 
Manager?

All?!?!

Developer?

Executive?

Who are you?



About the session
● There is a lot to cover today.
● We are going to go fast. Enjoy the ride. :)
● Slides are text heavy. Sorry!
● Slides are posted, please stay engaged!
● This information applies to any size migration.

How?
Sample project + Background + Phases



Who has migrated a site?
In one word, describe it. ☺
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First, let’s get a migration 
project.
nexus-travel.com



Nexus-Travel.com

This is taken from the multilingual demo on Drupal.org. See it: https://www.drupal.org/project/multilingual_demo

https://www.drupal.org/project/multilingual_demo


Who is Nexus Travel?
● It is an online business that sells pre-planned trips.
● It was built on the now non-supported Drupal 6. 
● The website is large.
● It has enterprise grade features.
● There are many types of content on the site.
● Much of their custom code interacts with data.



About the content
● Locations
● Tours
● Vendors
● Members
● LOTS of pretty pictures!
● Rich content tagging
● Advertisements are sold to vendors
● Commerce (membership, trips)

Node

Node

User

User

Commerce entities

Media entity

Taxonomy

Blocks



About the project
● Under a tight timeline.
● The “new and improved” features have 

not been defined.
● Large business investments are 

dependent on timely release.
● Organic SEO is the largest driver of traffic 

to their site.



How do you feel?



Before we start, let’s 
understand migration 
projects.

They are easy, right?



Why migrate?
● Software end of life.
● Mergers and acquisitions.
● Fixing the site is more painful than migration.
● Infrastructure / architecture cleanup.
● Rebranding.
● More...



Types of migration
● One-to-one. (data + functionality)
● Transformation. (old data → new architecture)
● Multiple sources → single source. (i18n)
● Single source → multiple source. (i18n)
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Real life:
Your project may use all types.



Frequency of migration
● Single Pass.
● Incremental.

Real life:
Your project may use both types.



Size, scale, and complexity
● Small amount of content.
● Enough content to invest in migration code.
● Content blob to structured field migration.

Real life:
What does small mean?!

HOW MANY FILES?!!
SOOOOO MUCH CONTENT!!!

Program

Manual

Program + Manual



Multiple technologies
● Drupal to Drupal
● Flat to Drupal
● Custom DB to Drupal
● Other CMS to Drupal

Hmm…..

Thank you, community!

Real life:
Your project may use many types.

Hmm…..

Hmm…..



Infrastructure considerations
● Pantheon
● Acquia
● Local hosts vs. remote / shared hosts
● Network 

Files directory structure

Can’t mv / files.

Real life:
Legitimate impacts to planning.

Memory, debugging

Transfer speeds, firewalls



Team considerations
● Projects can be long
● Migration may be after-hours
● Work is INCREDIBLY detail oriented
● Careful, deliberate, correct note-taking is required
● Work can be intense! 

Real life:
Who likes to work like this?



Team specialization
● Migration Project Manager
● Source Technology Engineer
● Migration Engineer
● Migrator
● Data Specialist

Real life:
Where do you get these people?

Plan and educate

Access source data

Develop migration code

Run migrations / recover from failure

Test the migrated data



Role-specific considerations
● Business owners
● Account managers
● Project managers
● Migration engineers
● Developers
● Site builders
● Themers
● And more...



Make it easier on your team.

Simplify where you can.



Spreadsheets!
No cell left behind.



No, really. 
Spreadsheets.
Migrations have a 
lot of moving parts.

Details 
Shmetails.



Why not a bug tracker?
A spreadsheet is a custom DB 
table(s) w/ all variables.
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Thorough planning 
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And the numbers prove it.
Do the math!

and 
vigilant management 

leads 
to

 project success. 



Start to get started.



Agile vs. Waterfall?
There are benefits of both methodologies. 

Waterfall:
● Order of operations.
● Sign-off and commitment.

Agile:
● Culture supports adjustments for new information.
● Meeting, reporting, review, and acceptance cadence.



Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Production migration.
Phases 8 - 10

Building.
Phases 4 - 7

Getting started.
Phases 1 - 3





Getting started.



Terminology
Artifact.

Word Origin & History

1821 (artefact) "anything made by human art," from It. artefatto, 
from L. arte "by skill" (ablative of ars "art;" see art (n.)) + factum 
"thing made," from facere "to make, do" (see factitious). 

Archaeological application dates from 1890. Artifactual (also 
artefactual) is recorded from 1950.
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Terminology

Source: Thesaurus.com
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Source: Thesaurus.com
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Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Getting started.
Phases 1 - 3



1. Pre-project education
Goals:
● Set expectations of project activities.
● Clarify the impact of requirements freeze.
● Identify possible phased statements of work.

Real life:
It is ready when it is ready.



1. Pre-project education
Migration projects take:
● Time
● Specialization
● Requirements lockdown
● Project fitness
● Transparency



1. Pre-project education
Nexus Travel:
● Undefined new features are a risk to schedule.
● Aggressive schedule may impact developer 

work-life balance because of nights and 
weekend work.

● Mitigate customer expectations with new 
launch dates.



2. Audit for migration
Goals:
● Surface the As-Is details of the current site(s)
● Begin understanding data
● Familiarity with site functionality
● Re-educate the business with findings



2. Audit for migration
Artifacts:
● Risks register
● Content audit (structure, data, size, source)
● Functionality audit (surface custom code!)
● Data health audit
● Infrastructure audit
● Functionality specific audits: SEO, Accessibility, Access
● Source URL lists (url patterns, special pages)
● Links to representative content. Everyone uses them!



2. Audit for migration
Artifacts:
● Risks register
● Content audit (structure, data, size, source)
● Functionality audit (surface custom code!)
● Data health audit
● Infrastructure audit
● Functionality specific audits: SEO, Accessibility, Access
● Source URL lists (url patterns, special pages)
● Links to representative content. Everyone uses them!

DNS, DNS, 

DNS!



2. Audit for migration
Lessons learned:
● Very few developers know how to audit for migration.
● Takes longer than you’d expect, even using tools.
● Auditing twice is costly.
● Do it right the first time.
● No cell left behind!! Blank != N/A
● Keep your artifacts and info in one place.
● Mitigates: “Oh, I didn’t think about that.” 



Name / Feature Entity type Source Complexity Count

Members user profile fields, multiple roles 50,000

Lots of pretty pictures files + media Disorganized, bad file names 60,000 / 65,000

Many vocabularies taxonomy Heavily tagged content 20

Many terms taxonomy Heavily tagged content 800

Basic Page node 200

Locations node each: 5 pictures, 150 fields, node 
hierarchy, many specialized fields - geo 
location

3,000

Vendors node specialized users + roles + permissions, 
media, locations

300

Trips node 150 fields, many relationships 15,000

Ads blocks 1,000

Share Your Trip node multiple pictures and videos 5,000

Commerce commerce entities 2,325,000

Aliases / Redirects alias / redirect 720,320 / 1,440,640



3. Discovery
Goals:
● Define new functionality and improvements.
● Prioritize feature development, with data in mind.
● Capture expectations of data on migration.
● Re-educate the business with findings.

Tools:
● Leverage the spreadsheets started by the audit!



3. Discovery
Artifacts:
● Feature list.
● Feature requirements.
● Project glossary with AKAs.
● Elaborate on the representative links list.



3. Discovery
Nexus Travel:
● Keep the old data.
● Transform select lists into taxonomy terms.
● Content team wants to make new content for “Paid 

Landing Pages” before site go-live.
● “Most functionality is the same.” Don’t trust this 

statement until sign-off for development.



Building stuff.



Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery Phase
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Building.
Phases 4 - 7



4. Architect the new site
Goals:
● Define new content structures.
● Define infrastructure with migration considerations.



4. Architect the new site
Artifacts:
● Leverage the spreadsheets started by the audit!
● Feature development roadmap
● Site architecture spreadsheet
● URL pattern planning



4. Architect the new site
Lessons learned:
● Every ENTITY is a migration pass! (pssst. paragraphs)

● Media entities require at least two passes (files + entity)

● You MUST architect EVERYTHING before building.
● DO NOT let your site builders just build without 

writing it down. Ever.



4. Architect the new site
Nexus Travel:
● Architects want to use Paragraphs for layout.
● Commerce does things in a new way to support older 

functionality.
● Business is getting excited and adds more 

requirements to the Paid Landing Page feature, add 
A/B testing, and add conversion funnel analytics.



5. Migration mapping
Goals:
● Document migration expectations for the business.
● Provides detailed requirements to Migration Engineers.
● Creates a testing matrix for post-migration data audit.



5. Migration mapping
Artifacts:
● Leverage the spreadsheets started by the audit!
● Migration mapping spreadsheet:

○ Source → destination fields + transformation 
○ Taxonomy term / select list →  term mapping
○ Migration dependencies / migration order



5. Migration mapping
Lessons learned:
● Done in parallel with new architecture.
● Mind the finer data details:

○ Types, field length, formats, dates, and filters!
○ Select lists → taxonomy / Term → term

● Splitting blobs (the Body) → structured content take 
extra programming and data testing.



5. Migration mapping
Nexus Travel:
● Basic page “Tags” select list has a 

text string mapping that splits to 
many different terms in new 
structured vocabularies.

● Image field is mapped to a specific 
media entity type.

● Hey, let’s add Spanish!



6. Development phase
Goals:
● Get ‘er done.
● Development of EVERYTHING!!!!!
● Reestimate the work, if necessary.
● Go back to site architecture phase, if necessary.
● Reeducate the client.



6. Development phase
Artifacts:
● The site.
● Migration code.
● Infrastructure setup.
● Detailed site rollback process.
● Go-live checklist: full list of migrations, duration, 

expected behaviors.



6. Development phase
Considerations:
● Site building MUST be complete before migration 

development starts.*
● Create the migration dependency / order before code.
● Develop migration code.
● Developer is responsible for first population of go-live 

checklist.
● Don’t over engineer. You are only doing this once.*



6. Development phase
Lessons Learned:
● Max joins on MySQL DB is 61.
● Documentation is your friend.
● Comments / UGC migrations need the parent entity!
● Watch the published / unpublished status of source.
● DOM parsing leads to memory leaks.
● Splitting a body field to structured field? Good luck!



6. Development phase
Nexus Travel:
● The Trips content migration hit the 61 join limit.
● The Share My Trip migration ran out of memory and 

had to be batched in groups of 1,000 in each pass.
● The network latency between one of the developers 

homes is really high and bandwidth is low and can skew 
migration run-time.



Name / Feature Full Migration Time Developer Migration Notes Count

Members 10 min - 90 min* 50,000

Lots of pretty pictures 16 hours* file copy down from source + file cleanup 
+ file copy up to destination + number of 
gigs/internet speed from both ends

60,000 / 65,000

Many vocabularies 2 min Heavily tagged content 20

Many terms 4 min Heavily tagged content 800

Basic Page 2 min 200

Locations each: 5 pictures, 150 fields, node 
hierarchy, many specialized fields - geo 
location

3,000

Vendors specialized users + roles + permissions, 
media, locations

300

Trips 60 min - 120 min lots of joins! 15,000

Ads blocks 1,000

Share Your Trip 250 min* memory leak, run in batches 5,000

Commerce 2,325,000

Aliases / Redirects 720,320 / 1,440,640



7. Pre-production migrations
Goals:
● Keep running migrations
● Debug and test data (dev team + engaged client)
● Populate the bulk of the data
● Estimate duration of final, go-live migrations.

Artifacts:
● Leverage the spreadsheets started by the audit!
● Go-live checklist: track time, success / failure, issues.



7. Pre-production migrations
Nexus Travel:
● We have to add X, Y, and Z to the Trips migration!

What happens now?
● If anything new, iterate on phase 4 - 7 over and over. 
● If any change impacts a related migration pass, you 

have to rollback + run other related migrations.
● Migrate ++, Cost ++,  Time ++





Do the math...
• PER MIGRATION

• 2 hours of definition
• 8 hours of development
• 120 min of migration x 4 rounds of testing 

(developer, client, migrator, data/site qa)
• 2 hours deployment overhead

• Total overage hours: 20 
• Total overage cost: $2,000 - $4,000 (rate variance) 
• Total overage time: Addition of 1 calendar week



Production migration.



Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Production migration.
Phases 8 - 10



8. Site testing and data audit
Goals:
● Test new site architecture with migrated data.
● Polish layout and functionality / fix bugs.
● Add additional, manual or new content.



8. Site testing and data audit
Artifacts:
● Leverage the spreadsheets started by the audit!
● Go-live checklist: track time and issues
● Browser testing
● SEO testing / redirects
● Performance tuning
● Go-live preparation



8. Site testing and data audit
Lessons learned:
● There is a “Moment of Truth” when the new, to-be 

production server becomes “Non-live Production” 
and the migrations are “REAL”.

● Rollback can be painful, time consuming, and require 
your pre-allocated developer resources.

● Do not run migrations in your non-live production 
environment until they have passed testing.



8. Site testing and data audit
Nexus Travel:
● We have to add A, B, and C to Share Your Trip data!
● This is going to delay launch, send an email to vendors!

What happens now?
● If anything new, iterate on phase 4 - 7 over and over. 
● If any change impacts a related migration pass, you 

have to rollback + run other migrations.
● Migrate ++, Cost ++,  Time ++



Do the math again...
• PER MIGRATION

• 2 hours of definition
• 8 hours of development
• 120 min of migration x 4 rounds of testing 

(developer, client, migrator, data/site qa)
• 2 hours deployment overhead

• 3 migrations impacted
• Total overage hours: 60 
• Total overage cost: $12,000 - $24,000 (rate 

variance) 
• Total overage time: Add 2 calendar weeks



9. Go-live!
Goals:
● Final migration & smooth cutover.

Artifacts:
● Go-live checklist. It isn’t just migration passes.
● DNS DNS DNS DNS DNS

DNS, DNS, 

DNS!



9. Go-live!
Lessons Learned:
● Practice migrations before cutover.
● Practice your roll back before cutover.
● You and your team will probably be tired.
● This your “A” game.
● Relax. Grab a glass of wine.
● Something is going to happen.



9. Go-live!
Nexus Travel:
● The hosting DNS failed.
● Source and new-prod server failed for 4 hours.
● Failure was identified on one of the backups, not a 

migration pass. Whew!
● Launch took 12 hours vs. the 8 due to the outage.
● The DNS propagated in a timely manner.



10. Post-launch validation
Goals:
● Did it work?
● Did we miss something on cutover?

Lessons Learned:
● This phase is important.
● You aren’t done when the site is cutover.



10. Post-launch validation
Artifacts:
● Speed tests.
● SEO tests.
● Error logs.
● Feedback from site users.



10. Post-launch validation
Nexus Travel:
● The 404 logs showed some missing redirects.
● Vendors were happy with their new features.
● Some data expected by members was “missing”.



Takeaways
● Incomplete requirements = rework = 

increased time and costs.

● Migration work is exponentially 
longer due to the nature of 
development and testing.

● Your team may change over time. 
Write everything down!



How do you feel?


