
Planning & Managing
Migrations
It’s for the birds.
Har har.

Aimee Degnan /

aimee@hook42.com
Drupal Camp LA 2017

Me
• 1996 – Enterprise Web Tech & CMS
• 2006 – PMP, Stanford Advanced PM
• 2008 – Drupal
• 2010 – Cerfitied Scrum Master, Product Owner
• aimee@hook42.com
• @aimeeraed

• www.hook42.com
• @hook42inc

Aimee Degnan, Hook 42

http://www.hook42.com

Hook 42
Full-service digital agency.
Certified Women’s Business Enterprise.
20+ years industry experience.
Actively contribute to the community.

• Complex projects
• Process automation
• Drupal
• Migrations
• Multilingual
• SEO

www.hook42.com
@hook42inc

http://www.hook42.com

Product
Manager?

Project
Manager?

All?!?!

Developer?

Executive?

Who are you?

About the session
● There is a lot to cover today.
● We are going to go fast. Enjoy the ride. :)
● Slides are text heavy. Sorry!
● Slides are posted, please stay engaged!
● This information applies to any size migration.

How?
Sample project + Background + Phases

Who has migrated a site?
In one word, describe it. ☺

6

First, let’s get a migration
project.
nexus-travel.com

Nexus-Travel.com

This is taken from the multilingual demo on Drupal.org. See it: https://www.drupal.org/project/multilingual_demo

https://www.drupal.org/project/multilingual_demo

Who is Nexus Travel?
● It is an online business that sells pre-planned trips.
● It was built on the now non-supported Drupal 6.
● The website is large.
● It has enterprise grade features.
● There are many types of content on the site.
● Much of their custom code interacts with data.

About the content
● Locations
● Tours
● Vendors
● Members
● LOTS of pretty pictures!
● Rich content tagging
● Advertisements are sold to vendors
● Commerce (membership, trips)

Node

Node

User

User

Commerce entities

Media entity

Taxonomy

Blocks

About the project
● Under a tight timeline.
● The “new and improved” features have

not been defined.
● Large business investments are

dependent on timely release.
● Organic SEO is the largest driver of traffic

to their site.

How do you feel?

Before we start, let’s
understand migration
projects.

They are easy, right?

Why migrate?
● Software end of life.
● Mergers and acquisitions.
● Fixing the site is more painful than migration.
● Infrastructure / architecture cleanup.
● Rebranding.
● More...

Types of migration
● One-to-one. (data + functionality)
● Transformation. (old data → new architecture)
● Multiple sources → single source. (i18n)
● Single source → multiple source. (i18n)

15

Real life:
Your project may use all types.

Frequency of migration
● Single Pass.
● Incremental.

Real life:
Your project may use both types.

Size, scale, and complexity
● Small amount of content.
● Enough content to invest in migration code.
● Content blob to structured field migration.

Real life:
What does small mean?!

HOW MANY FILES?!!
SOOOOO MUCH CONTENT!!!

Program

Manual

Program + Manual

Multiple technologies
● Drupal to Drupal
● Flat to Drupal
● Custom DB to Drupal
● Other CMS to Drupal

Hmm…..

Thank you, community!

Real life:
Your project may use many types.

Hmm…..

Hmm…..

Infrastructure considerations
● Pantheon
● Acquia
● Local hosts vs. remote / shared hosts
● Network

Files directory structure

Can’t mv / files.

Real life:
Legitimate impacts to planning.

Memory, debugging

Transfer speeds, firewalls

Team considerations
● Projects can be long
● Migration may be after-hours
● Work is INCREDIBLY detail oriented
● Careful, deliberate, correct note-taking is required
● Work can be intense!

Real life:
Who likes to work like this?

Team specialization
● Migration Project Manager
● Source Technology Engineer
● Migration Engineer
● Migrator
● Data Specialist

Real life:
Where do you get these people?

Plan and educate

Access source data

Develop migration code

Run migrations / recover from failure

Test the migrated data

Role-specific considerations
● Business owners
● Account managers
● Project managers
● Migration engineers
● Developers
● Site builders
● Themers
● And more...

Make it easier on your team.

Simplify where you can.

Spreadsheets!
No cell left behind.

No, really.
Spreadsheets.
Migrations have a
lot of moving parts.

Details
Shmetails.

Why not a bug tracker?
A spreadsheet is a custom DB
table(s) w/ all variables.

27

Thorough planning

28

And the numbers prove it.
Do the math!

and
vigilant management

leads
to

 project success.

Start to get started.

Agile vs. Waterfall?
There are benefits of both methodologies.

Waterfall:
● Order of operations.
● Sign-off and commitment.

Agile:
● Culture supports adjustments for new information.
● Meeting, reporting, review, and acceptance cadence.

Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Production migration.
Phases 8 - 10

Building.
Phases 4 - 7

Getting started.
Phases 1 - 3

Getting started.

Terminology
Artifact.

Word Origin & History

1821 (artefact) "anything made by human art," from It. artefatto,
from L. arte "by skill" (ablative of ars "art;" see art (n.)) + factum
"thing made," from facere "to make, do" (see factitious).

Archaeological application dates from 1890. Artifactual (also
artefactual) is recorded from 1950.

34

Terminology

Source: Thesaurus.com

35

Source: Thesaurus.com

36

Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Getting started.
Phases 1 - 3

1. Pre-project education
Goals:
● Set expectations of project activities.
● Clarify the impact of requirements freeze.
● Identify possible phased statements of work.

Real life:
It is ready when it is ready.

1. Pre-project education
Migration projects take:
● Time
● Specialization
● Requirements lockdown
● Project fitness
● Transparency

1. Pre-project education
Nexus Travel:
● Undefined new features are a risk to schedule.
● Aggressive schedule may impact developer

work-life balance because of nights and
weekend work.

● Mitigate customer expectations with new
launch dates.

2. Audit for migration
Goals:
● Surface the As-Is details of the current site(s)
● Begin understanding data
● Familiarity with site functionality
● Re-educate the business with findings

2. Audit for migration
Artifacts:
● Risks register
● Content audit (structure, data, size, source)
● Functionality audit (surface custom code!)
● Data health audit
● Infrastructure audit
● Functionality specific audits: SEO, Accessibility, Access
● Source URL lists (url patterns, special pages)
● Links to representative content. Everyone uses them!

2. Audit for migration
Artifacts:
● Risks register
● Content audit (structure, data, size, source)
● Functionality audit (surface custom code!)
● Data health audit
● Infrastructure audit
● Functionality specific audits: SEO, Accessibility, Access
● Source URL lists (url patterns, special pages)
● Links to representative content. Everyone uses them!

DNS, DNS,

DNS!

2. Audit for migration
Lessons learned:
● Very few developers know how to audit for migration.
● Takes longer than you’d expect, even using tools.
● Auditing twice is costly.
● Do it right the first time.
● No cell left behind!! Blank != N/A
● Keep your artifacts and info in one place.
● Mitigates: “Oh, I didn’t think about that.”

Name / Feature Entity type Source Complexity Count

Members user profile fields, multiple roles 50,000

Lots of pretty pictures files + media Disorganized, bad file names 60,000 / 65,000

Many vocabularies taxonomy Heavily tagged content 20

Many terms taxonomy Heavily tagged content 800

Basic Page node 200

Locations node each: 5 pictures, 150 fields, node
hierarchy, many specialized fields - geo
location

3,000

Vendors node specialized users + roles + permissions,
media, locations

300

Trips node 150 fields, many relationships 15,000

Ads blocks 1,000

Share Your Trip node multiple pictures and videos 5,000

Commerce commerce entities 2,325,000

Aliases / Redirects alias / redirect 720,320 / 1,440,640

3. Discovery
Goals:
● Define new functionality and improvements.
● Prioritize feature development, with data in mind.
● Capture expectations of data on migration.
● Re-educate the business with findings.

Tools:
● Leverage the spreadsheets started by the audit!

3. Discovery
Artifacts:
● Feature list.
● Feature requirements.
● Project glossary with AKAs.
● Elaborate on the representative links list.

3. Discovery
Nexus Travel:
● Keep the old data.
● Transform select lists into taxonomy terms.
● Content team wants to make new content for “Paid

Landing Pages” before site go-live.
● “Most functionality is the same.” Don’t trust this

statement until sign-off for development.

Building stuff.

Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery Phase
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Building.
Phases 4 - 7

4. Architect the new site
Goals:
● Define new content structures.
● Define infrastructure with migration considerations.

4. Architect the new site
Artifacts:
● Leverage the spreadsheets started by the audit!
● Feature development roadmap
● Site architecture spreadsheet
● URL pattern planning

4. Architect the new site
Lessons learned:
● Every ENTITY is a migration pass! (pssst. paragraphs)

● Media entities require at least two passes (files + entity)

● You MUST architect EVERYTHING before building.
● DO NOT let your site builders just build without

writing it down. Ever.

4. Architect the new site
Nexus Travel:
● Architects want to use Paragraphs for layout.
● Commerce does things in a new way to support older

functionality.
● Business is getting excited and adds more

requirements to the Paid Landing Page feature, add
A/B testing, and add conversion funnel analytics.

5. Migration mapping
Goals:
● Document migration expectations for the business.
● Provides detailed requirements to Migration Engineers.
● Creates a testing matrix for post-migration data audit.

5. Migration mapping
Artifacts:
● Leverage the spreadsheets started by the audit!
● Migration mapping spreadsheet:

○ Source → destination fields + transformation
○ Taxonomy term / select list → term mapping
○ Migration dependencies / migration order

5. Migration mapping
Lessons learned:
● Done in parallel with new architecture.
● Mind the finer data details:

○ Types, field length, formats, dates, and filters!
○ Select lists → taxonomy / Term → term

● Splitting blobs (the Body) → structured content take
extra programming and data testing.

5. Migration mapping
Nexus Travel:
● Basic page “Tags” select list has a

text string mapping that splits to
many different terms in new
structured vocabularies.

● Image field is mapped to a specific
media entity type.

● Hey, let’s add Spanish!

6. Development phase
Goals:
● Get ‘er done.
● Development of EVERYTHING!!!!!
● Reestimate the work, if necessary.
● Go back to site architecture phase, if necessary.
● Reeducate the client.

6. Development phase
Artifacts:
● The site.
● Migration code.
● Infrastructure setup.
● Detailed site rollback process.
● Go-live checklist: full list of migrations, duration,

expected behaviors.

6. Development phase
Considerations:
● Site building MUST be complete before migration

development starts.*
● Create the migration dependency / order before code.
● Develop migration code.
● Developer is responsible for first population of go-live

checklist.
● Don’t over engineer. You are only doing this once.*

6. Development phase
Lessons Learned:
● Max joins on MySQL DB is 61.
● Documentation is your friend.
● Comments / UGC migrations need the parent entity!
● Watch the published / unpublished status of source.
● DOM parsing leads to memory leaks.
● Splitting a body field to structured field? Good luck!

6. Development phase
Nexus Travel:
● The Trips content migration hit the 61 join limit.
● The Share My Trip migration ran out of memory and

had to be batched in groups of 1,000 in each pass.
● The network latency between one of the developers

homes is really high and bandwidth is low and can skew
migration run-time.

Name / Feature Full Migration Time Developer Migration Notes Count

Members 10 min - 90 min* 50,000

Lots of pretty pictures 16 hours* file copy down from source + file cleanup
+ file copy up to destination + number of
gigs/internet speed from both ends

60,000 / 65,000

Many vocabularies 2 min Heavily tagged content 20

Many terms 4 min Heavily tagged content 800

Basic Page 2 min 200

Locations each: 5 pictures, 150 fields, node
hierarchy, many specialized fields - geo
location

3,000

Vendors specialized users + roles + permissions,
media, locations

300

Trips 60 min - 120 min lots of joins! 15,000

Ads blocks 1,000

Share Your Trip 250 min* memory leak, run in batches 5,000

Commerce 2,325,000

Aliases / Redirects 720,320 / 1,440,640

7. Pre-production migrations
Goals:
● Keep running migrations
● Debug and test data (dev team + engaged client)
● Populate the bulk of the data
● Estimate duration of final, go-live migrations.

Artifacts:
● Leverage the spreadsheets started by the audit!
● Go-live checklist: track time, success / failure, issues.

7. Pre-production migrations
Nexus Travel:
● We have to add X, Y, and Z to the Trips migration!

What happens now?
● If anything new, iterate on phase 4 - 7 over and over.
● If any change impacts a related migration pass, you

have to rollback + run other related migrations.
● Migrate ++, Cost ++, Time ++

Do the math...
• PER MIGRATION

• 2 hours of definition
• 8 hours of development
• 120 min of migration x 4 rounds of testing

(developer, client, migrator, data/site qa)
• 2 hours deployment overhead

• Total overage hours: 20
• Total overage cost: $2,000 - $4,000 (rate variance)
• Total overage time: Addition of 1 calendar week

Production migration.

Phases of a migration project
1. Pre-project education
2. Audit for migration
3. Discovery
4. Architect the new site
5. Migration mapping
6. Development phase
7. Pre-production migration
8. Site testing and migration audit
9. Go live!!!!!!!!

10. Post-launch validation

Production migration.
Phases 8 - 10

8. Site testing and data audit
Goals:
● Test new site architecture with migrated data.
● Polish layout and functionality / fix bugs.
● Add additional, manual or new content.

8. Site testing and data audit
Artifacts:
● Leverage the spreadsheets started by the audit!
● Go-live checklist: track time and issues
● Browser testing
● SEO testing / redirects
● Performance tuning
● Go-live preparation

8. Site testing and data audit
Lessons learned:
● There is a “Moment of Truth” when the new, to-be

production server becomes “Non-live Production”
and the migrations are “REAL”.

● Rollback can be painful, time consuming, and require
your pre-allocated developer resources.

● Do not run migrations in your non-live production
environment until they have passed testing.

8. Site testing and data audit
Nexus Travel:
● We have to add A, B, and C to Share Your Trip data!
● This is going to delay launch, send an email to vendors!

What happens now?
● If anything new, iterate on phase 4 - 7 over and over.
● If any change impacts a related migration pass, you

have to rollback + run other migrations.
● Migrate ++, Cost ++, Time ++

Do the math again...
• PER MIGRATION

• 2 hours of definition
• 8 hours of development
• 120 min of migration x 4 rounds of testing

(developer, client, migrator, data/site qa)
• 2 hours deployment overhead

• 3 migrations impacted
• Total overage hours: 60
• Total overage cost: $12,000 - $24,000 (rate

variance)
• Total overage time: Add 2 calendar weeks

9. Go-live!
Goals:
● Final migration & smooth cutover.

Artifacts:
● Go-live checklist. It isn’t just migration passes.
● DNS DNS DNS DNS DNS

DNS, DNS,

DNS!

9. Go-live!
Lessons Learned:
● Practice migrations before cutover.
● Practice your roll back before cutover.
● You and your team will probably be tired.
● This your “A” game.
● Relax. Grab a glass of wine.
● Something is going to happen.

9. Go-live!
Nexus Travel:
● The hosting DNS failed.
● Source and new-prod server failed for 4 hours.
● Failure was identified on one of the backups, not a

migration pass. Whew!
● Launch took 12 hours vs. the 8 due to the outage.
● The DNS propagated in a timely manner.

10. Post-launch validation
Goals:
● Did it work?
● Did we miss something on cutover?

Lessons Learned:
● This phase is important.
● You aren’t done when the site is cutover.

10. Post-launch validation
Artifacts:
● Speed tests.
● SEO tests.
● Error logs.
● Feedback from site users.

10. Post-launch validation
Nexus Travel:
● The 404 logs showed some missing redirects.
● Vendors were happy with their new features.
● Some data expected by members was “missing”.

Takeaways
● Incomplete requirements = rework =

increased time and costs.

● Migration work is exponentially
longer due to the nature of
development and testing.

● Your team may change over time.
Write everything down!

How do you feel?

